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Abstract

Eurodollar futures, Euroyen futures, and EuroCanada futures represent financial assets which have ceilings.
This paper presents a theory which establishes a risk neutral valuation relationship (RNVR) for pricing deriva-
tives written on upper bounded underlying variables. First, the theory is developed in a single period economy.
It is assumed that there is a representative agent with a particular utility function of the HARA family of utility
functions, and that aggregate wealth and the underlying variable are bivariate upper bound or negatively
skewed lognormally distributed. Second, the theory is developed in a continous-time framework where the
risk aversion assumption is dropped, and replaced by the assumption of two long lived underlyings dynam-
ically traded. It is assumed that the risky underlying follows an upper bound or negatively skew geometric
brownian motion which has, at the end of each period, an upper bound lognormal distribution. The model is
applied to derive closed-form solutions for the price of call and put options. These solutions depend on an
extra parameter, not contained in the Black-Scholes model, the upper bound parameter.

Introduction

Black and Scholes (1973) and Merton (1973) establish
the first risk neutral valuation relationship (RNVR)!.
This RNVR is a relation between the value of a contin-
gent claim and the value of the underlying variables,
which depends on other exogenous parameters, but
is compatible with arbitrary preference parameters, in
particular with risk neutrality, under which all assets
yield the same equilibrium expected rate of return.
They assume that two assets are dynamically traded
and, then, that the payoff of a contingent claim can be
continuously replicated. In this Black-Scholes-Merton
world risky assets follow a geometric brownian mo-
tion and then have a lognormal distribution at the end
of each period.

A utility-based approach to the risk neutral valua-
tion of contingent claims is addressed, among oth-
ers, by Rubinstein (1976), Brennan (1979), Stapleton
and Subrahmanyam (1984), and Turnbull and Milne
(1991)2.  Under this approach, the Black-Scholes
model may be derived, for example, assuming a rep-
resentative agent whose utility function displays con-
stant proportional risk aversion (CPRA). Aggregate

wealth and the underlying risky variable are bivariate
lognormally distributed.

The no-arbitrage approach to the risk neutral valuation
of contingent claims is addressed, among others,> by
Cox and Ross (1976), Harrison and Kreps (1979), and
Harrison and Pliska (1981). Under this approach, it is
shown that if there are no arbitrage opportunities then
discounted prices are martingales under an equivalent
probability measure. The assumption that agents are
risk averse is dropped. It is assumed that markets are
completed by dynamically trading two assets, a stock
and a bond.

This paper aims at complementing the option pricing
theory (OPT), deriving a risk neutral valuation relation
for the pricing of contingent claims when the underly-
ing variable is upper bounded. Such model might be
useful to price derivatives when the underlying vari-
ables show behavior which fits reasonably in one of
the following two cases:

First, in some cases, two financial variables are related
by a straight line with a negative slope. In this case,
if one variable has a lognormal distribution then the

The expression risk neutral valuation relationship (RNVR) is due to Brennan (1979).
2See also the preference-based models derived by Camara (2003) and (2005) and Schroder (2004).

3See the review article by Cox and Huang (1989).

JAlliance Journal of Business Research



A Model for Pricing Derivatives

other has an upper bound or negatively skewed lognor-
mal distribution *. As an example consider the interest
rate derivatives market, where there are related price-
based options and yield-based options. In some cases,
the price of a financial contract is equal to a thresh-
old less a yield or, if one prefers, the yield is equal to
the threshold less the price. The Chicago Mercantile
Exchange (CME) lists options on treasury bill futures,
Eurodollar futures, EuroCanada futures, Euroyen fu-
tures, and LIBOR futures. The valuation of options on
Eurodollars must be consistent with the pricing of op-
tions on its implied interest rate, since a Eurocontract
futures price is equal to 100 less the implied interest
rate. In the same way, the valuation of the price-based
options on 13-week T-bill futures listed at the CME
must be consistent with the valuation of the yield-
based options on 13-week T-bills listed at the Chicago
Board Options Exchange (CBOE). Suppose that the
Black (1976) model is used by a bond portfolio man-
ager to price derivatives written on the price, then the
manager should use the upper bound lognormal risk
neutral option pricing model > to get values for yield-
based options.

Second, some underlying variables might have nega-
tive values. In general, cash-flows which enter into
real option problems might have both inflows and out-
flows. For example, the operating cash-flow is the
fundamental underlying variable of many real option
problems, such as the option to defer investment, the
option to expand the scale of production, or the op-
tion to abandon a project permanently. Some exotic
spread options require an underlying stochastic vari-
able that might assume both negative and positive val-
ues®. The Black-Scholes model cannot be used to
price contingent claims on underlying variables which
might have negative values, since it has an implied

(risk-neutral) lognormal probability density function
(PDF). Therefore, the true or actual distribution of the
underlying variable also gives a probability of zero to
the event in which the underlying variable has negative
values. The negatively skewed or upper bound lognor-
mal gives a positive probability to both events, inflows
and outflows.

The main goal of this article is to establish a theory
for the risk neutral pricing of derivatives when the un-
derlying variable behaves as described before. First,
the theory is developed in a single period discrete-time
economy. Second, the theory is developed in a multi-
period continuous-time economy to consistently price
options with different maturities in the same econ-

omy ’.

In the first part of the article it is assumed that markets
open at the beginning and the end of the economy, and
then that there is no trade between those two dates.
The set of securities in the economy is countably fi-
nite. It is assumed that the aggregation problem ® is al-
ready solved, which is a sufficient condition for prices
to be derived in a representative agent economy.

The article establishes a risk neutral valuation relation-
ship (RNVR) assuming both that there is a represen-
tative agent with a particular utility function of the
HARA family of utility functions and that aggregate
wealth and the underlying risky variable are bivariate
upper bound or negatively skewed lognormally dis-
tributed. Therefore, markets are dynamically incom-
plete. The assumption of a particular type of absolute
risk aversion is an extremely strong one, but should
only be seen as a sufficient condition to derive the op-
tion pricing formulae. The paper derives a RNVR,
that might be useful to price real options, without the
double assumption that it is possible to construct and

4 Aitchison and Brown (1957) p.16 define x = 6 — y, where x has a lognormal distribution and 6 is the upper bound of the nega-
tively skew or upper bound lognormal random variable y. It should be noted that any straight line with an arbitrary negative slope and x

lognormal might be expressed in that form.

5The model derived in this article might be easily extended to price interest-rate derivatives in the same form that the Black (1976)

model extends the Black-Scholes (1973) model.
See Zhang (1998), p.491.

"The motivation for this developement of the theory arises from the fact that it is not possible to price consistently options with

different maturities in the same single period economy.

$The aggregation property is solved when prices in the economy are determined independently of the distribution of initial wealth. Ru-
binstein (1974) and Brennan and Kraus (1976) derive, respectively, sufficient and necessary conditions for aggregation. These conditions
are, in the case of the utility function used in this article, that all investors have identical cautiousness.
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maintain a replicating portfolio and that there is con-
tinuous trading. The RNVR allows one to price any
contingent claim using the negatively skewed or upper
bound lognormal risk neutral PDF.

The risk neutral valuation relationship is applied to de-
rive closed-form solutions for both the price of a call
option and the price of a put option. It is shown that
there is a relation between the price of a negatively
skewed or upper bound call (put) and the value of a
lognormal or Black-Scholes put (call). As an impli-
cation of this fact, the paper gives conditions for the
value of a portfolio of call options to be equal to the
price of a portfolio of put options.

The following part of the paper drops the risk aver-
sion assumption. There are two assets in this econ-
omy, a risky asset and a riskless one. The price of
the risky asset is governed by an upper bound or neg-
atively skewed geometric brownian motion. The so-
lution of the negatively skewed geometric brownian
motion has, at the end of each period, a negatively
skewed lognormal distribution. Assuming that it is
possible to replicate the payoff value of a contingent
claim throught continuous trading, the paper derives
an RNVR in continuoustime. This explores the mar-
tingale approach of Harrison and Kreps (1979) and
Harrison and Pliska (1981).

The issue of an upper bounded underlying variable
has been addressed in the option pricing literature,
but in distinguishable terms of the present paper,
among others, by Brennan and Schwartz (1985), Dixit
(1989), Stapleton and Subrahmanyam (1993), Dixit
and Pindyck (1994), and Trigeorgis (1996). All this
work, with the exception of the paper by Stapleton
and Subrahmanyam (1993), contributes to the real op-
tions literature. In general, such research rests on the
explicit assumption that replicating portfolios may be
formed by continuously trading in the futures con-
tracts of the commodity ° or that there is a risk neu-
tral firm '°. In general, to use upper bounds, the re-
searchers have truncated the processes followed by the
variables at the threshold level. This contrasts with

°See Brennan and Schwartz (1985).
19See Dixit (1989).

the model derived in this paper, where the variable is
not truncated, but its density has an upper bound in
the same natural way that the lognormal has a lower
bound at zero. Stapleton and Subrahmanyam (1993)
develop a binomial model to price interest-rate options
for when the underlying has a bound at the unit. This
contrasts with our continuous state-space model with
an arbitrary threshold parameter.

The remainder of the paper is organized as follows.
Section 2 explains what is option pricing theory, and
it is directed to those readers who do not have a fi-
nance background. Section 3 presents the discrete
time model. Section 4 presents the continuous time
model. Section 5 concludes.

Option Pricing Theory

The modern option pricing theory begins with the
work by Black and Scholes (1973) and Merton (1973),
who derived the first preference-free closed-form so-
lution for the price of a stock option'!. According
to the Black-Scholes valuation equation, the price of
the option depends on five variables: the current stock
price, the strike or exercise price, the maturity of the
option, the riskless interest rate, and the volatility or
standard deviation of stock returns. The first four vari-
ables are observable, while the volatility of the stock
is relatively easy to estimate. Hence, in order to use
the formula, we first obtain the values of these five
variables, then we plug them into the Black-Scholes
valuation equation, and as result we obtain the price
of the option.

The Black-Scholes valuation equation is valuable be-
cause:

1. It does not depend on preference parameters.
This result is important since preference param-
eters are very difficult to estimate. The op-
tion pricing equations derived previously to the
Black-Scholes (1973) work depended either on
preferences or other arbitrary parameters that
are very difficult to obtain.

'This section presents a minor extension of the overview of option pricing theory given by Camara (2004).
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2. It does not depend on the location parameter of
the stock price distribution (i.e. the actual ex-
pected return under their assumption that stock
returns are normally distributed). This is rele-
vant since the location parameter is, in practice,
very difficult to estimate with precision.

3. Itis compatible with risk-neutrality; i.e. a world
where all assets yield the riskless rate of return.
No risk-premium affects the equation. This is
important since risk-premiums are also, in prac-
tice, very difficult to estimate.

4. Itis obtained under no-arbitrage conditions and,
therefore, sustained by some equilibrium econ-
omy.

5. It is obtained in closed-form and, therefore, eas-
ily applied in practice.

The first of these five characteristics is not a surpris-
ing result given the assumptions of Black and Scholes
(1973). These authors assume that there are no arbi-
trage opportunities in the economy, and that the stock
and options written on the stock might be continuously
traded. Under these assumptions it is possible to con-
struct and to maintain a riskless portfolio (involving
the stock and the option) which, since it is riskless,
yields the riskless rate of return. From a mathemati-
cal point of view, this is a partial differential equation
whose solution is the Black-Scholes valuation equa-
tion. Since preference parameters do not enter into the
problem, it is not surprising that preferences do not
affect the price of stock options.

Since its early stages the Black-Scholes model re-
ceived a great deal of attention from academics and
practitioners. One branch of the literature has inves-
tigated the investors attitudes toward risk and, in par-
ticular, the type of risk aversion that can sustain the
Black- Scholes formulae in the pricing of stock op-
tions. This branch of research is interesting because
it shows conditions on preferences and distributions
that lead to the Black-Scholes option price when it is
not possible to construct and to maintain a dynamic
riskless portfolio. It is costly to trade dynamically

stocks and options written on the stock and, therefore,
it is also important from a practical point of view to
know that the Black-Scholes equation holds under al-
ternative assumptions to the dynamic riskless hedge
assumption.

The earlier literature was almost unanimous in relating
a power utility function with the Black-Scholes valu-
ation model. Under such utility function, which dis-
plays constant proportional risk aversion (CPRA), the
percentage invested in risky assets is unchanged as the
wealth of the investors increases. For example, Ru-
binstein (1976) and Brennan (1979) remark that the
Black-Scholes model can be obtained in an equilib-
rium economy, when agents have power utility func-
tions characterized by CPRA, and aggregate wealth
and the stock price are jointly lognormally distributed.
Unfortunately, empirical and theoretical research has
cast doubts on the reasonability of the CPRA assump-
tion. There are many authors who believe that in-
vestors, instead of CPRA, display other types of pref-
erences.

Recently, Camara (2003) and Schroder (2004) showed
that the Black-Scholes valuation equation also holds
with many other types of utility functions or pref-
erence functions. Therefore, Camara (2003) and
Shroder (2004) derive many equilibrium economies
that sustain the Black-Scholes valuation equation even
if it is not possible to construct and to maintain a risk-
less portfolio. The practical implication of this is that,
even if dynamic trading is not possible, there are still
many situations were we can use the Black-Scholes
valuation equation. Here, we extend this idea to other
distributions.

There are other interesting extensions of the Black-
Scholes work by those who study call and put options.
A branch of the literature has investigated how to price
other options besides call and put options. These are
known as exotic options. Another branch of the liter-
ature has tested the implications of the Black-Scholes
model, and has found that this model does not price
options correctly in the marketplace. This has lead to
the proposal of other models that, for example, include
jumps in the stock price.
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The One-Period Framework

The Economy

The model assumes that markets open at the begin-
ning and the end of the economy, and then that there
is no trade between those two dates. In such a situa-
tion a riskless hedge is not possible to construct and
maintain, and dynamic trading does not exist. To price
contingent claims in this economy, it is necessary to
use a preference-based model.

The analysis starts by assuming that the initial con-
sumption decision has already been taken. The rep-
resentative investor maximizes the expected utility of
end-of-period wealth, EP[U(W))], where:

Wi = Wor+ Y > m [ (S 1, 1) = S jo, O)r|
ko

P is the actual probability measure;
U(.) is her utility for end-of-period wealth;
W) is the investor’s initial wealth;

r is the riskless return, i.e. one plus the riskless rate of
return; 12

n; is the investor’s demand for units of claims (k =
1,...,K for all j);

fk(S j1, 1) is the end-of-period payoff associated with
the contingent claim k as a function of the underlying
variable j;

Jk(S jo, 0) is the current price of the claim fi(S i, 1);

S j1 is the end-of-period value of the underlying vari-
able j.

Assuming that the representative agent is nonsatiated
and risk averse, the expected utility is maximized
when:

EPLU (W) £i(S j1, D] = r£i(S jo, OEF U (W))]

L EPLU (W) /(S 1, D]
EP[U'(W))]

or Ji(S jo,0) = r

for all claims.

The current price of individual claims can also be writ-
ten, using the law of iterated expectations, in terms of
their end-of-period payoffs as follows:

fi(S j0,0) = rEPL/(S 1, DZ(S ;)1 (1)

EPLU' (WIS j1]

where
EP[U"(W))]

Z(S 1) = )
defines the pricing kernel. In particular, the underlying
risks S 1* can themselves be priced by using a particu-

lar application of the general formula,
So=rEF[SZ(S)] 3)

where S¢ is the current value of the underlying
stochastic variable.

The general valuation formulae (1) and (3) will be
used to investigate option prices in an economy where
the representative agent has a particular utility func-
tion of the HARA family of utility functions and the
marginal distribution of S is a negatively skewed log-
normal.

The Negatively Skewed Lognormal and the Utility
Function

Definition 1. (The bivariate negatively skewed log-
normal distribution)

Let the two-dimensional random variable (W, S') have
the joint probability density function (p.d.f.):

h(W, s) =

1
2no,o A1 —p2(@ - S)T-W)

I (ln(@—S)—,u)z
R T o
n@—-S8)—u In(r — W) —u,
—2% o Ty
2
N (ln(T —UW) —uw) @

for W < 1, S < 6, where o, o, u,, 4, p, 0 are
constants such that -1 < p < 1,0 < 0y, 0 < 0o,

12Section 3 develops the theory in an intertemporal economy, where r will be the continuously compounded riskless rate of return.

13The subscripts &, j, and 1 will be dropped henceforth.
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—00 < Uy, < 00, —00 < u < 00, —00 < 6 < oo, and
—00 < T < oo. Then the random variable (W, S) is
defined to have a bivariate negatively skewed or upper
bound lognormal distribution.

Lemma A2 of Appendix A shows that the actual
marginal distribution of the underlying is a negatively
skewed or upper bound lognormal A”(u, o, 6).

Definition 2. (The negatively skewed lognormal
risk neutral density)

If A(S) is the upper bound lognormal actual density of
the underlying variable with parameters u, o, and 6 i.e.
h(S) is AP(u,o,0), then g(S) is the negatively skew
lognormal risk neutral density with scale parameter
n(@ — Sor) — %0'2, shape parameter o, and threshold
parameter @ i.e. g(S)is AC(In(@ — Sor) — %0'2, o, 0)14
where Q denotes the risk neutral or equivalent proba-
bility measure of the underlying risk.

Definition 3. (The marginal utility function)

The marginal utility function of end-of-period wealth
is:

U'W)=(x-Wwy” &)

where the 7 > W > 0 is required for nonsatiation and
¢ > 0 is required for risk aversion. 1

Lemma 1.

Suppose that the representative agent has a marginal
utility function given by equation (5). Let aggregate
wealth and the underlying variable have a bivariate
negatively skew lognormal distribution and, in partic-
ular, a bivariate p.d.f. given by equation (4). Then the
pricing kernel Z(S), defined by equation (2), is given

by the following equation:

_EPUW)IS]
A8 = e awy]
W 1
= exppp=[in(0 - $) ~ ] = 5¢°T0p? | (6)

Proof: By lemma Al of Appendix A, the marginal
distribution of wealth is a univariate negatively skew
lognormal. Using both lemma A1 and the definition
of the ¢ moment about 7 of a negatively skew lognor-
mal random variable yields:

EP[U'(W)] = exp [svuw + %sozaz]
By lemma A3 of Appendix A, the conditional dis-
tribution of wealth given the value of the underly-
ing is a univariate negatively skew lognormal. Using
both lemma A3 and the definition of the ¢. moment
about t of a negatively skew lognormal random vari-
able yields:

EP[U'(W)IS] = exp [souw +pe 22 (@ - $) - ]

+%90203, (1- p2)]

Substituting the last two equations in equation (2)
yields the pricing kernel as given by equation (6).

Option Valuation

This subsection establishes a RNVR when the under-
lying stochastic variable has a marginal upper bound
or negatively skewed lognormal distribution.

Proposition 1. (The discrete-time model)

Suppose that the representative agent has a marginal
utility function given by equation (5). Let aggregate
wealth and the underlying variable have a bivariate

'“The moment about 6 of AP(u, o, 6) is EP[(0 — §)*] = explau + $?0?]. Therefore E[S] = 6 — explu + 107?].
5The underlying utility function appears to be a power one, but it is a quadratic one. The utility function is given by U(W) =
‘pﬁ(‘r — W)#*L. Then the marginal utility function is given by equation (5), with the restriction T > W > 0 denoting nonsatiation. Also,

U"(W) = —p(t — W)¢~!, with the restriction ¢ > 0 denoting risk aversion. Then the measure of absolute risk aversion A(W) =

_Uw
U (w)

is given by A(W) = y(r — W)~!. Hence A’(W) = ¢(7 — W)~ > 0, which shows that the utility function displays increasing absolute risk

aversion.

JAlliance Journal of Business Research



Anténio Camara

negatively skewed lognormal distribution and, in par-
ticular, a bivariate p.d.f. given by equation (4). Then
there is a general risk neutral valuation relationship for
the pricing of contingent claims, i.e.

EP[£i(S j1, DZ(S 1)1 = E2[£i(S j1, 1]

Proof: Suppose that the representative agent has a
marginal utility function of wealth given by equation
(5) and that the joint density of wealth and underly-
ing variable is an upper bound lognormal given by
equation (4). Then by lemma A2 of Appendix A, the
marginal distribution of the underlying variable is an
upper bound lognormal.

The current value of the underlying stochastic variable
(3), which has a marginal upper bound lognormal dis-
tribution, after using the derived pricing kernel (6) and
simplifying the resulting expression, is given by:

oo 1
S Tzf S—
O L V- )

[In(® = S) — (u + acypo)|* | dS (7)

exp|—-——
P17552
It follows directly, when the expression (7) is evalu-
ated, that:

2

a0 + =1l -rSy) — % (8)

The current value of the contingent claim (1), since
the underlying stochastic variable has a marginal neg-
atively skewed lognormal distribution, after using the
derived pricing kernel (6) and simplifying the resulting
expression, can be written as:

So0,0)r = S, H)——
F(So.0)r wa( s

exp —F

[In(@—S)— (u+ a/(TWpO')]Z} s (9)

Using the valuation relation (8) to eliminate preference
parameters yields:

S0,0) = S, 1)————
f(S0,0) Imf( )\/EU(O—S)

exp

1 1, T
—F[ln(e—S)—(ln(H—Sor)—50'2)] }dS (10)

which is a risk neutral valuation relationship (RNVR),
since it satisfies definition 2.

Corollary 1. (Call and put option prices)

Suppose that the representative agent has a marginal
utility function given by equation (5). Let aggregate
wealth and the underlying variable have a bivariate up-
per bound lognormal distribution and, in particular, a
bivariate p.d.f. given by equation (4). Then:

(i) the price of an European call option written on
a nondividend paying underlying is given by the
formula:

foe = (So=0r")N(d)—r(K=0)N(dy) (11)

(ii) the price of an European put option written on
a nondividend paying underlying is given by the
formula:

fop = (K =0 N(=dy) = (So = 0r™") N(=dy) (12)

where:
0-K\ 1 2
di = l”(e—sor) 27
o
dg = d] + o

where K is the exercise price and N(.) is the cu-
mulative distribution function of a standard nor-
mal random variable.

The next corollary relates Black-Scholes option val-
ues to negatively skewed option values, i.e. to option
values whose underlying has a negatively skewed log-
normal distribution.

Corollary 2. (Two put-call parities)

Suppose that the representative agent has a marginal
utility function given by equation (5). Let aggre-
gate wealth and the underlying variable have a bivari-
ate negatively skewed lognormal distribution and, in
particular, a bivariate p.d.f. given by (4). Let both
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S* =0-S8 and K* = 6 — K. Then there are two
put-call parities:

foe=foy (13)
fop = ford (14)

where:

f&s is the Black-Scholes value for a call with strike
price K*;

f(f;: is the Black-Scholes value for a put with strike
price K*;

Proof: Suppose that the representative agent has a
marginal utility function of wealth given by equation
(5) and that the joint density of wealth and underly-
ing variable is a negatively skew lognormal given by
equation (4). Then by lemma A2 of Appendix A, the
marginal distribution of the underlying variable S is
an upper bound lognormal. If § ~ AP(u,o,6) then
S* ~ AP(u, o), by the relation between the lognormal
distribution and the negatively skewed lognormal dis-
tribution. One can easily see that:

(1) Max[S - K,0] = Max[K* - S*,0]

(ii) Max[K —S,0] = Max[S* - K*,0]
where K* = 6§ — K. In words:

(i) A negatively skewed call option with a strike
price K is equivalent to a Black-Scholes put op-
tion with a strike price K*;

(i) A negatively skewed put option with a strike
price K is equivalent to a Black-Scholes call op-
tion with a strike price K*;

Hence one can write equations (13) and (14) immedi-
atly.

An immediate implication of the previous corollary is
that, under the conditions of the corollary, there is a
portfolio of calls equal to a portfolio of puts, and in
particular:

Joe + I3 = fop + fory (15)

Equation (15) shows conditions for the value of a port-
folio of calls to be equal to the value of a portfolio of
puts. The left-hand side of equation (15) is the value
of a portfolio with two call options, one with a neg-
atively skewed lognormal underlying S and exercise
price K, and the other with a lognormal underlying S *
and exercise price K*. The right-hand side of equation
(15) is the value of a portfolio with two put options,
one with a negatively skewed lognormal underlying
S and exercise price K, and the other with a lognor-
mal underlying S* and exercise price K*. Equations
(13), (14) and (15) may have some practical interest
for the interest-rate derivatives market, where there are
related yield-based options and price-based options.

The Continuous-Time Framework

The Economy

In the following B is a one-dimensional Brownian mo-
tion, starting from the origin, defined on a complete
probability space (Q, F, P) and F is the standard filtra-
tion generated by B.

There are two assets in this economy, a risky asset and
a riskless asset. The price of the risky asset S, at time
t is governed by the stochastic differential equation:

dS; = [,uS, +rhe T /JOe_r(T_[)] dt

. [ee—’”—” - S,] dB, (16)

where —co <y < 00, 0 > 0, —c0 < 0 < oo, r > 0, and
0e~™T > S are constants, and 7 € E[0, T]. Equation
(16) is the formula of an upper bound or negatively
skewed geometric Brownian motion.

The explicit solution to the Stochastic Differential
Equation (SDE) (16) with + = T is given by the fol-
lowing equation:

St =0 (07T = So) W 2B (17)

The proof of this statement is given in appendix B.

If the risky underlying follows a SDE given by equa-
tion (16) then S+ has a negatively skewed lognormal
distribution:

2
S~ AP [ln (677~ S0) + (,J - %)T,a«/i 9] (18)
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To see this, one should note from equation (17) that S 7
has a negatively skewed lognormal distribution with
threshold parameter 8. The corresponding normally
distributed random variable zr is:

zr =n[0—Sr]
0_2
with EP[z7] = In(@e™" = S¢) + (u - 7) T
and Varf[zr] = T

The price of the riskless asset B, at time ¢ is governed
by the equation:

Bi = Boe” 19)

where 8y > 0

This section drops the assumption that the investor is
risk averse. It is assumed that a nonsatiated investor
trades dynamically two long lived securities to achieve
an optimal random wealth at time 7.

Option Valuation

Harrison and Kreps (1979) and Harrison and Pliska
(1981) show that if the price system (S,,5;) with t €
E[0, T'] has no arbitrage opportunities then discounted
prices are martingales under a equivalent martingale
measure. We explore now this notion in the negatively
skewed geometric Brownian motion setting to derive
the pricing formulae for option prices.

Now, we change the measure of the underlying to de-
rive closed-form solutions for option prices. Let Q be
the measure on & that is equivalent to P and whose
Radon-Nikodym derivative is given by:

d r— 1 (r—p\?
£=exp[ O_”Bt——(—'u) t]

BZ‘:Bt‘Fut
o

Then:

where {B,, t € E[0, T]} is a Brownian motion on [0, T']
under Q. Equation (16) implies that we have Q-a.s.:

dS[ = I”S,dl - [ge—r(T—t) - S[:I dét

or

't !
St = SO + rf Su du - O-\f I:Qe—l‘(T—M) - Su] dBu (20)
0 0

—rT

with r > 0, o0 > 0, and Oe >S.

The solution to equation (20) with t = T is Q-a.s.
given by

ST =60 (ee—rT _ SO) e(r—%o'z)T+0'BT (21)

Therefore, S 7 has 0-a.s. a negatively skew lognormal
distribution:

A2 [ln (0-Soe™) - %O’ZT, o VT, 9] (22)

To obtain the next equation, the martingale pricing for-
mula (23), it was only necessary to show the existence
of a unique equivalent martingale measure, which im-
plies market completeness, due to Harrison and Pliska
(1981). All contingent claims can then be dynamically
replicated and priced by:

£(S0,0) = EC[e”T f(S 7, 7)) (23)

We can now use formulae (22) and (23) to price con-
sistently derivatives of different maturities in the same
economy.

Conclusion

This paper complements the option pricing theory,
presenting a theory for pricing options when the un-
derlying variable has an arbitrary upper bound. The
theory is first derived in an utility-based economy sim-
ilar to that of Brennan (1979). Then the theory is pre-
sented in a no-arbitrage economy following Merton
(1973) and Harrison and Pliska (1981). The general
risk neutral valuation relationship is applied to derive
equations for the price of a call option and a put op-
tion. However, the risk neutral valuation relation may
be used to price any contingent claims on ceiling un-
derlyings.

This work might be extended in several directions. For
example, if there are multiple underlying variables one
might extend the multivariate RNVR of Stapleton and
Subrahmanyam (1984). A continuous-time multivari-
ate model can also be derived. The general theory de-
rived in this paper might also be applied to investigate
problems in the real options area.
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The modern option pricing theory was initiated by
Black and Scholes (1973). These authors derive a val-
uation equation for the price of call and put options
which does not depend on preferences. The theory
has implications for many areas including the valua-
tion of corporate securities, real options, and executive
compensation. For example, the valuation of certain
bonds can be done using an extension of the model
proposed by Black-Scholes. The area of real options
applies the option pricing models initially designed for
pricing financial options to the area of real investments
(i.e. investment projects). Many types of compensa-
tion plans can be seen as option-like instruments, and
can be evaluated using the methods discussed in this

paper.
Appendix A

Definition. (The bivariate negatively skewed log-
normal distribution)

Let the two-dimensional random variable (W, S) have
the joint probability density function:

1
hW,S) =
(5 2no,o A1 —p2@ - S) T -W)
1 (ln(H—S)—,u)2
P\~ ) o
n@—-S8)—u In(t — W) —u,
— o oy
2
+(ln(T _O‘-V)_,uw) (24)

for W < 1, § < 0, where o, 0, ty, i, p, 0 and 7
are constants such that -1 < p < 1,0 < oy, 0 < 0,
—00 < Iy, < 00, —00 < U < 00, —00 < f < oo, and
—00 < T < oo, Then the random variable (W, S) is
defined to have a bivariate negatively skewed or upper
bound lognormal distribution.

First, it is shown that the function actually represents
a density by showing that its integral over the whole
plane is 1; that is:

foofoof(W,S)deW:l (25)

The next substitutions are made to simplify the inte-
gral:

In(r = W) — py,
U= ——-—-——
Ty
n(@—S)—u
y= ———

o

so that it becomes:

('] (o] 1
Ioo f—oo 24/l —p2
1

_— dvdu
2(1-p?)

[u2 —2puv + vz]

exp [—

On completing the square on u in the exponent, it ob-
tains:

(o] (o] 1
f—oo Ioo 271'\/1 —p2
1
exp [—m [ —pv? + (1 —pz)vz]] dvdu

And substituting:

du
V1 -p?

the integral may be written as the product of two sim-
ple integrals:

f°° 1 2 J f‘x’ 1 2 d
e 2 dx e 2dv
—00 V27T —00 V27T

both of which are 1. Equation (25) is thus verified.

dx =

Lemma Al. (The marginal distribution of wealth)

If (W,S) has a bivariate negatively skew lognormal
distribution, with joint density function given by equa-
tion (24), then the marginal distribution of W is a uni-
variate negatively skewed lognormal distribution; that
is, W ~ AP(u,y, o\, 7).
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Proof: The marginal density of W is, by definition,
given by the following equation:

W) = f W, S)dS
and substituting:
n@-S)-u
y= ——,
o

and completing the square on v, yields the following
equation:

© 1
hW =f
W —00 2710y, A1 — p2(1 = W)

[ l(ln(T—W)—yw)2
exp|—z|————

2 Oy

dv

1 ( B ln(T—W)—,uw)2
-\ T o

Then the substitutions:

v —pln(T = W) —py)/oy

V1 -p?

dv
1-p?

dx =

show that:

1 . {_l(ln(T—W)—,uw)z
2ror, (t — W) r 2 Ty

which is a univariate upper bound or negatively
skewed lognormal density.

W) =

Lemma A2. (The marginal distribution of the un-
derlying)

If (W,S§) has a bivariate negatively skew lognormal
distribution, with joint density function given by equa-
tion (24), then the marginal distribution of S is a uni-
variate negatively skewed lognormal distribution; that
is, S ~ AP(u,0,0).

Proof: The marginal density of S is by definition:

nS) = fooh(W,S)dW

o0

and substituting:

In(W — 1) — u,,
vy ———————

Ty

and completing the square on v, one finds that:

0 1
hs =f
) —0 210 A1 = p2(0 - S)

l 1(ln(9—S)—,u)2
pls\ T

o

ln(H—S)—y)z "

1
“21-p?) (V_p -

Then the substitutions:

v—p(n@-S5)-pw/o
Nigys
dv
1 - p?

dx =

show that:

2
h(s) = 1 (ln(H—S)—,u)

o

1
«/Zr(r(e—S)exp[ 2

which is a univariate upper bound or negatively
skewed lgnormal distribution.

Lemma A3. (The conditional distribution of wealth
given the underlying)

If (W, §) has a bivariate negatively skewed lognormal
distribution, with joint density function given by equa-
tion (24), then the conditional distribution of W given
S = sis a univariate negatively skewed lognormal dis-
tribution; that is W|S is:

O w 1
AP | +p;“<ln<e = 8) =), (%1 = p*)2, 7

Proof: The conditional density of W for fixed values
of S is:
(S, W)
hS)

KW|S) =
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and after substituting, the expression might be put in
the form:

1
h(W|S) =
\/ﬂa-w V 1 _,02(7— - W)
exp —m [In(t = W)

2
~t+ 020 - 5) —y))] ]

which is a univariate upper bound or negatively
skewed lognormal density.

Appendix B

Lemma:

Suppose that the stock price Su follows the SDE given
by:

ds, = [r@e_r(T_t) - (06_’(T_’) - S,) u] dt

- [ee‘r(T"> - S,] dB, (26)

where —co < pu < 00, 0 > 0, —c0 < 0 < oo, r > 0, and
0e T > S are constants, and 7 € E[0, T].

Then the solution to this SDE with # = T is given by:
St =0 (07T = Sg) 2B (27)
Proof: (The proof follows Mao (1997), p. 98-99.)

Equation (26) is a scalar linear SDE. The correspond-
ing homogeneous linear equation is the geometric
Brownian motion:

Then the fundamental solution of equation (28) is
given by:
D(f) = W27 HB (29)

The explicit solution of equation (26) is given by:

t
S(t) = D(r) (So + f (I)_l(u) [(F _ Iu)ge—r(T—u)
0

!
+eaze—’<T—“>] du — f o' (whoe T 4B,
0

Substituting equation (29) into the previous equation,
and simplifying, yields:

S() = e(“_%o'z)H‘TB’So +0eT (r —u+ 0'2)

! ( (TZ)
r—u+%- Ju—=oB
f e # 2 u du
0

~ 0—]: e(r_y+"—22)u—o'B,,dBu (30)

Now consider the function:

2
(r—,u+ 5 )u—(rx,,

Vix,uy=-e

Then, by applying Itos formula, we obtain the follow-
ing equality:

2
d [er—y+ %u—o’Bu]

= [r —p+ 0'2] e(r_w%z)u_UB” du

(o g, @

—oe
Equation (31) can be rewritten as:
e(r—y+ ”—72 )Z—O'B,

-1

t 2\,
=(r—p+ O'z)f e(r_’”T) 7P
0
t 2\
e f w5 Jo-o. dB, (32)
0

Substituting equation (32) into equation (30) yields,
after simplification, the following equation:

St — ee—r(T—t) _ (ge—rT _ SO) e(}l—%O'Z)t+O'B, (33)

which yields the desired result at time t = T as given
by equation (27).
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